Reliable classification using neural networks: a genetic algorithm and backpropagation comparison
نویسندگان
چکیده
Artificial Neural Networks have been shown to have the potential to perform well for classification problems in many different environments, including business, science and engineering. Studies in the literature often report that the artificial neural network dominates traditional statistical techniques for most problems examined. Since a neural network can embed most traditional techniques as special cases we explore why the neural network does not always dominate traditional statistical classification techniques. One reason may be that the majority of these studies rely on a gradient algorithm, typically a variation of backpropagation, to obtain the weights of the model. Although, the limitations of gradient search techniques applied to complex nonlinear optimization problems, such as the artificial neural network, are well known, many researchers still choose to use these methods for network optimization. In this paper, we demonstrate through an intensive Monte Carlo study using real world data sets, that a global search algorithm such as the genetic algorithm overcomes the limitations of these gradient techniques.
منابع مشابه
Prediction of mechanical and fresh properties of self-consolidating concrete (SCC) using multi-objective genetic algorithm (MOGA)
Compressive strength and concrete slump are the most important required parameters for design, depending on many factors such as concrete mix design, concrete material, experimental cases, tester skills, experimental errors etc. Since many of these factors are unknown, and no specific and relatively accurate formulation can be found for strength and slump, therefore, the concrete properties ca...
متن کاملHardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm
Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Decision Support Systems
دوره 30 شماره
صفحات -
تاریخ انتشار 2000